# 2021

# Rotary Shaft Seals

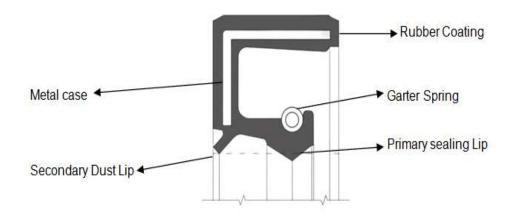


Ank Seals Pvt.Ltd. 4/28/2021

# Rotary Shaft Seals

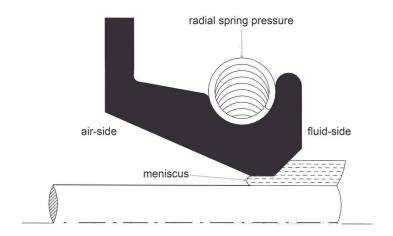
Rotating shaft seals are vital components in any rotating equipment. They generally perform two important functions:

- To prevent leakages and in turn retain the system lubrication
- To prevent of contaminants into the system.


Rotary shaft seals typically consist of a metal insert and a rubber sealing element with a spring-energized sealing lip.

#### Technical data:

#### Description of a Rotary shaft seals


Every shaft seal consists of:

- Sealing lip in elastomer material, which is in direct contact with the shaft and
  - whose main function is to ensure a good sealing performance.
- Metal case, in AISI 304 or AISI 316, whose function is to ensure a proper press fit to prevent rotation of seal in the housing.
- Garter spring, in AISI 302, whose function is to preload the sealing lip



## Working principle

The sealing effect is achieved by preloading the sealing lip, making its internal diameter slightly smaller than the shaft diameter. This is achieved with the help of a garter spring which is embedded into the grove cut into the sealing lip. The garter spring ensures constant mechanical pressure and maintains the radial force to the shaft. Sealing is provided by the surface tension of the hydrodynamic oil film between the seal flattened area and the shaft. Oil thickness must be between 1 and 3  $[\mu m]$  to avoid leakage. The meniscus acts as an interface between the outside air and the fluid. Any break in the meniscus will result in leakage. This can occur if the shaft contains scratches along the seal path.



#### Materials:

Metal body: AISI 304; AISI 316 2

Garter spring: AISI 302; AISI 316;

Elastomer: NBR; FKM; VMQ; HNBR; EPDM

## Standard compounds

#### **NBR – Nitrile rubber**

ADVANTAGES: Good resistance to paraffin base oil (aliphatic), mineral oils and greases, hydraulic oils, water and water solutions (lye).

LIMITATIONS: Low resistance to ozone, atmospheric agents, direct sunlight. Not resistant to glycol base fluids and low resistance to polar fluids (ketones, ethers and esters), chlorinate hydrocarbons and aromatic solvents.

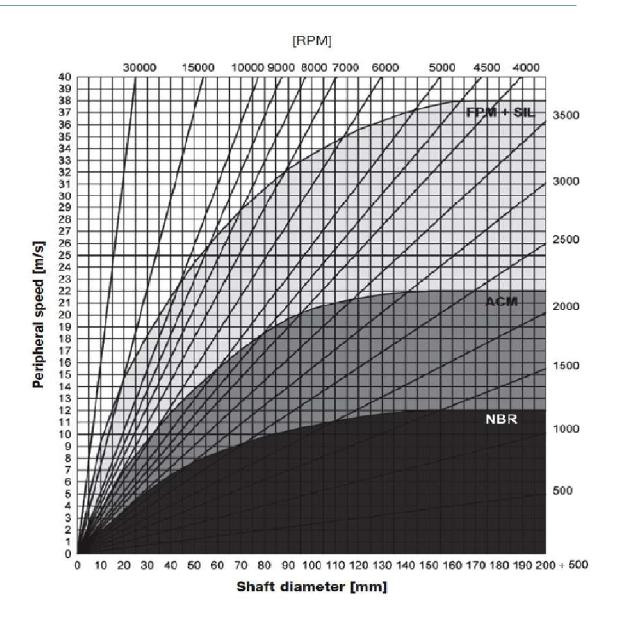
OPERATING TEMPERATURES: -30°C / + 120°C.

#### FPM – Viton rubber

ADVANTAGES: Optimal resistance to heat and chemical agents; its properties remain unaltered till about 200°C. It offers optimal performances in cont act with aliphatic hydrocarbons, aromatic hydrocarbons (toluol, benzol, xylole), vegetable and mineral oils and greases (even with additives, chlorinate solvents, ozone, light and atmospheric agents).

LIMITATIONS: Hardening at low temperatures, bad resistance to abrasion if compared to NBR.

OPERATING TEMPERATURE: -30°C / + 200°C.


#### HNBR – Hydrogenated nitrile rubber

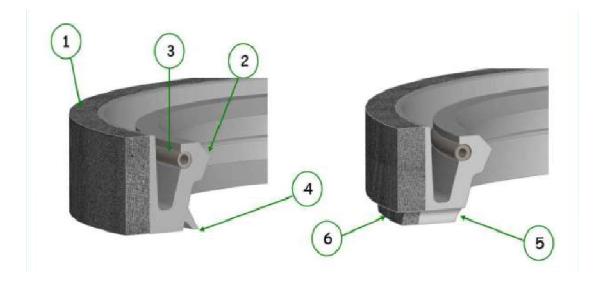
ADVANTAGES: The chemical composition of this elastomer ensures (especially if it is vulcanized through a peroxide system) a resistance to high temperatures up to 30°C (better than nitrile rubber) and an optimal resistance to abrasion. Good resistance to heat and ozone.

LIMITATIONS: bad resistance to ageing.

OPERATING TEMPERATURE: -40°C / + 150°C.

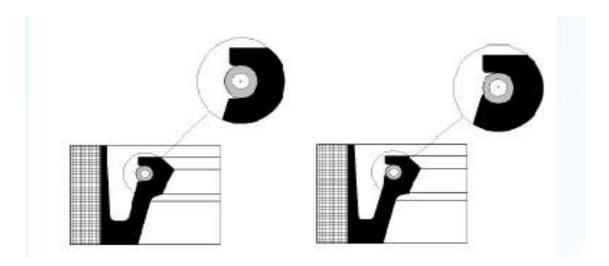
# Permissible speeds in pressure-free state according to DIN 3760




# Standard shaft seal types (in accordance with DIN 3760)

# Rotary shaft oil seals according to DIN 3760 norm. Manufactured with rubber or with metal outer diameter. A Type AS Type B Type BS Type C Type CS Type

#### TEXTILE RUBBER OIL SEALS

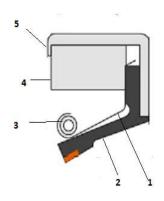

Oil seal with flexible reinforced textile-rubber back and rubber sealing lip with garter spring. Since there is not metal case the seals have to be axially clamped in the housing with a metal plate to ensure that they don't rotate during operation.





- 1- Fabric reinforced section
- 2- Primary sealing lip
- 3- Garter spring
- 4- Additional dust lip
- 5- Radial hole for lubrication
- 6- Groove for lubrication

# Special Design of Garter spring housing vs conventional housing




The seating area of the garter spring is designed to prevent it it from popping out accidentally during assembly. Specially designed keeping in mind "blind" installations on site.

## Oil Seal type RMT



- Ideal for severe operating conditions with great misalignments and high speeds where rigidity and strength are necessary.
- Can seal at radial misalignments of up to 2,5 mm
- The outer metal case is formed from a single piece without welding points.
- The sealing lip is vulcanized onto the rubber sealing lip



#### **RMT** features

- 1- Finger Spring
- 2- Rubber sealing ring
- 3- Garter spring: AISI 316
- 4- Stiffening ring
- 5- Metal body

Elastomer: NBR; HNBR; FKM; VMQ

Applications: Paper Mills, Steel Mills, Wind mills, Mining industry. Dimensions: Minimum I.D. 180 mm to Maximum O.D. 2.000 mm

Working speed: up to 40 m/s Pressure: up to 0.5 BAR

Operating temperature range: - 40°C / + 220°C

## **V Rings**

V Ring is an all elastomer axial seal for rotary shafts and bearings. It rotates with the shaft and seals axially against a stationary counterface perpendicular to the shaft. This type of seal has been used widely for several applications and has proved to be reliable and effective against dust, dirt, water and oil splash and other media.

The ring consists of three parts:



- a: the seal body, installed with interference to the shaft;
- b: the hinge, acting as a spring connection between the body and the lip;
- c: the conical and flexible sealing lip which provides the actual dynamic sealing against the counterface.

The counterface can be the side wall of the bearing, a washer or any housing.

#### Types of V Rings **VA Type VS Type** VL Type The most common Wide body to ensure This seal is intended profile. It has a higher radial force than for applications where perpendicular rear face. VA type. available space is Wide range of sizes, Range of sizes from 5 narrow. to 199 [mm] shafts from 3 to over 2000 Range of sizes from 110 to over 1200 [mm] [mm] shafts shafts



Heavy-duty primarily designed for large high speed bearing arrangements, used for instance in rolling mills and papermaking machine applications. Range of sizes from 200 to over 2000 [mm] shafts



#### **VE Type**

Heavy-duty large diameter seal. used for instance in steel mills, paper mills and rolling mills as a dirt/water excluder seal. A clamping band can be used to improve axial fixation. Range of sizes from 300 to over 2000 [mm] shafts

# Standard sizes: VA Type

- General Industry
- Metals Industry
- Wind Mill Industry

| Def  |    | Shaft dia | ame          | ter [mm] | Ri   | ng dimer | nsions [ | mm] | Mounting dimensions [mm] |     |     |     |   |     |
|------|----|-----------|--------------|----------|------|----------|----------|-----|--------------------------|-----|-----|-----|---|-----|
| Ref. |    |           | C            |          | d    | D        | h        | Н   | d <sub>2</sub>           | d   | ų į |     | H |     |
| VA   | 3  | 2,7       | -            | 3,5      | 2,5  | 5,5      | 2,1      | 3   | C + 1                    | C+  | 4   | 2,5 | ± | 0,3 |
| VA   | 4  | 3,5       | -            | 4,5      | 3,2  | 7,2      | 2,4      | 3,7 | C + 1                    | C+  | 6   | 3   | ± | 0,4 |
| VA   | 5  | 4,5       |              | 5,5      | 4    | 8        | 2,4      | 3,7 | C + 1                    | C+  | 6   | 3   | ± | 0,4 |
| VA   | 6  | 5,5       | -            | 6,5      | 5    | 9        | 2,4      | 3,7 | C + 1                    | C+  | 6   | 3   | ± | 0,4 |
| VA   | 7  | 6,5       | *            | 8        | 6    | 10       | 2,4      | 3,7 | C + 1                    | C+  | 6   | 3   | + | 0,4 |
| VA   | 8  | 8         | -            | 9,5      | 7    | 11       | 2,4      | 3,7 | C + 1                    | C+  | 6   | 3   | ± | 0,4 |
| VA   | 10 | 9,5       | -            | 11,5     | 9    | 15       | 3,4      | 5,5 | C + 2                    | C+  | 9   | 4,5 | ± | 0,6 |
| VA   | 12 | 11,5      | -            | 13,5     | 10,5 | 16,5     | 3,4      | 5,5 | C + 2                    | C+  | 9   | 4,5 | ± | 0,6 |
| VA   | 14 | 13,5      | -            | 15,5     | 12,5 | 18,5     | 3,4      | 5,5 | C + 2                    | C+  | 9   | 4,5 | ± | 0,6 |
| VA   | 16 | 15,5      | ( <b>4</b> ) | 17,5     | 14   | 20       | 3,4      | 5,5 | C+2                      | C+  | 9   | 4,5 | ± | 0,6 |
| VA   | 18 | 17,5      | -            | 19       | 16   | 22       | 3,4      | 5,5 | C + 2                    | C+  | 9   | 4,5 | ± | 0,6 |
| VA   | 20 | 19        | -            | 21       | 18   | 26       | 4,7      | 7,5 | C+2                      | C+  | 12  | 6   | ± | 0,8 |
| VA   | 22 | 21        | -            | 24       | 20   | 28       | 4,7      | 7,5 | C + 2                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 25 | 24        | 55           | 27       | 22   | 30       | 4,7      | 7,5 | C + 2                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 28 | 27        | _            | 29       | 25   | 33       | 4,7      | 7,5 | C + 3                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 30 | 29        | •            | 31       | 27   | 35       | 4,7      | 7,5 | C + 3                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 32 | 31        | -            | 33       | 29   | 37       | 4,7      | 7,5 | C + 3                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 35 | 33        |              | 36       | 31   | 39       | 4,7      | 7,5 | C + 3                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 38 | 36        | -            | 38       | 34   | 42       | 4,7      | 7,5 | C + 3                    | C+  | 12  | 6   | ± | 0,8 |
| VA   | 40 | 38        | -            | 43       | 36   | 46       | 5,5      | 9   | C + 3                    | C+  | 15  | 7   | ± | 1   |
| VA   | 45 | 43        | _            | 48       | 40   | 50       | 5,5      | 9   | C + 3                    | C + | 15  | 7   | ± | 1   |
| VA   | 50 | 48        | -            | 53       | 45   | 55       | 5,5      | 9   | C + 3                    | C+  | 15  | 7   | ± | 1   |

| VA | 55   | 53  | -              | 58   | 49  | 59  | 5,5  | 9    | C+3    | C+  | 15 | 7     | ± | 1   |
|----|------|-----|----------------|------|-----|-----|------|------|--------|-----|----|-------|---|-----|
| VA | 60   | 58  | -              | 63   | 54  | 64  | 5,5  | 9    | C+3    | C+  | 15 | 7     | ± | 1   |
| VA | 65   | 63  | -              | 68   | 58  | 68  | 5,5  | 9    | C+3    | C+  | 15 | 7     | ± | 1   |
| VA | 70   | 68  | _              | 73   | 63  | 75  | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 75   | 73  | -              | 78   | 67  | 79  | 6,8  | 11   | C + 4  | C+  | 18 | 9     | ± | 1,2 |
| VA | 80   | 78  | _              | 83   | 72  | 84  | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 85   | 83  | _              | 88   | 76  | 88  | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 90   | 88  | -              | 93   | 81  | 93  | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 95   | 93  | -              | 98   | 85  | 97  | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 100  | 98  | 2              | 105  | 90  | 102 | 6,8  | 11   | C+4    | C+  | 18 | 9     | ± | 1,2 |
| VA | 110  | 105 | -              | 115  | 99  | 113 | 7,9  | 12,8 | C+4    | C+  | 21 | 10,5  | ± | 1,5 |
| VA | 120  | 115 | -              | 125  | 108 | 122 | 7,9  | 12,8 | C+4    | C+  | 21 | 10,5  | ± | 1,5 |
| VA | 130  | 125 | Ξ              | 135  | 117 | 131 | 7,9  | 12,8 | C + 4  | C + | 21 | 10,5  | ± | 1,5 |
| VA | 140  | 135 | -              | 145  | 126 | 140 | 7,9  | 12,8 | C+4    | C+  | 21 | 10,5  | ± | 1,5 |
| VA | 150  | 145 | -              | 155  | 135 | 149 | 7,9  | 12,8 | C+4    | C+  | 21 | 10,5  | ± | 1,5 |
| VA | 160  | 155 | -              | 165  | 144 | 160 | 9    | 14,5 | C+5    | C + | 24 | 12    | ± | 1,8 |
| VA | 170  | 165 | $\overline{a}$ | 175  | 153 | 169 | 9    | 14,5 | C + 5  | C+  | 24 | 12    | ± | 1,8 |
| VA | 180  | 175 | _              | 185  | 162 | 178 | 9    | 14,5 | C+5    | C+  | 24 | 12    | ± | 1,8 |
| VA | 190  | 185 | -              | 195  | 171 | 187 | 9    | 14,5 | C + 5  | C+  | 24 | 12    | ± | 1,8 |
| VA | 199  | 195 | -              | 210  | 180 | 196 | 9    | 14,5 | C + 5  | C + | 24 | 12    | ± | 1,8 |
|    |      |     |                |      |     |     |      |      |        |     |    |       |   |     |
| VA | 200  | 190 | -              | 210  | 180 | 210 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 220  | 210 | 16             | 235  | 198 | 228 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 250  | 235 | -              | 265  | 225 | 255 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 275  | 265 | -              | 290  | 247 | 277 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 300  | 290 | -              | 310  | 270 | 300 | 14,3 | 25   | C+10   | C+  | 45 | 20    | ± | 4   |
| VA | 325  | 310 | -              | 335  | 292 | 322 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 350  | 335 | ₹:             | 365  | 315 | 345 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 375  | 365 | 7.             | 390  | 337 | 367 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 400  | 390 | 77.5           | 430  | 360 | 390 | 14,3 | 25   | C+10   | C+  | 45 | 20    | ± | 4   |
| VA | 450  | 430 | 7              | 480  | 405 | 435 | 14,3 | 25   | C+10   | C+  | 45 |       | ± | 4   |
| VA | 500  | 480 | -              | 530  | 450 | 480 | 14,3 | 25   | C+10   | C+  | 45 | 20    | ± | 4   |
| VA | 550  | 530 | -              | 580  | 495 | 525 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 600  | 580 | 7              | 630  | 540 | 570 | 14,3 | 25   | C+10   | C+  | 45 | 20    | ± | 4   |
| VA | 650  | 630 | 2              | 665  | 600 | 630 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 700  | 665 | 2              | 705  | 630 | 660 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 725  | 705 | -              | 745  | 670 | 700 | 14,3 | 25   | C + 10 | C+  |    | 00000 | ± | 4   |
| VA | 750  | 745 | 2              | 785  | 705 | 735 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 800  | 785 | -              | 830  | 745 | 775 | 14,3 | 25   | C + 10 | C+  |    | 20    | ± | 4   |
| VA | 850  | 830 | 2              | 875  | 785 | 815 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |
| VA | 900  | 875 | -              | 920  | 825 | 855 | 14,3 | 25   | C + 10 | C + | 45 | 20    | ± | 4   |
| VA | 950  | 920 | ÷              | 965  | 865 | 895 | 14,3 | 25   | C + 10 | C+  |    | 20    | ± | 4   |
| VA | 1000 | 965 | +              | 1015 | 910 | 940 | 14,3 | 25   | C + 10 | C+  | 45 | 20    | ± | 4   |

| VA | 1050 | 1015 | - | 1065 | 955  | 985  | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
|----|------|------|---|------|------|------|------|----|--------|----|----|------|---|
| VA | 1100 | 1065 | - | 1115 | 1000 | 1030 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1150 | 1115 | - | 1165 | 1045 | 1075 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1200 | 1165 | 3 | 1215 | 1090 | 1120 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1250 | 1215 | - | 1270 | 1135 | 1165 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1300 | 1270 | - | 1320 | 1180 | 1210 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1350 | 1320 |   | 1370 | 1225 | 1255 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1400 | 1370 | 2 | 1420 | 1270 | 1300 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1450 | 1420 | - | 1470 | 1315 | 1345 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1500 | 1470 | - | 1520 | 1360 | 1390 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1550 | 1520 | - | 1570 | 1405 | 1435 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1600 | 1570 | - | 1620 | 1450 | 1480 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1650 | 1620 | _ | 1670 | 1495 | 1525 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1700 | 1670 | - | 1720 | 1540 | 1570 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1750 | 1720 | _ | 1770 | 1585 | 1615 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1800 | 1770 | - | 1820 | 1630 | 1660 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1850 | 1820 | - | 1870 | 1675 | 1705 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1900 | 1870 | - | 1920 | 1720 | 1750 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 1950 | 1920 | - | 1970 | 1765 | 1795 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |
| VA | 2000 | 1970 | - | 2020 | 1810 | 1840 | 14,3 | 25 | C + 10 | C+ | 45 | 20 ± | 4 |

# Standard sizes: VS Type

- General Industry
- Wind Mill Industry

| Ref. |     | Shaft di | ame  | ter [mm] | Ri   | ng dimer | nsions [r | nm]  | Моц            | ınting | dimer | nsions | mm | 1   |
|------|-----|----------|------|----------|------|----------|-----------|------|----------------|--------|-------|--------|----|-----|
| Her. |     |          | С    |          | d    | D        | h         | H    | d <sub>2</sub> | c      | 4     | i      | Н, |     |
| VS   | 5   | 4,5      | 25   | 5,5      | 4    | 8        | 3,9       | 5,2  | C+1            | C+     | 6     | 4,5    | ±  | 0,4 |
| VS   | 6   | 5,5      | Ψ.   | 6,5      | 5    | 9        | 3,9       | 5,2  | C+1            | C+     | 6     | 4,5    | ±  | 0,4 |
| VS   | 7   | 6,5      | -    | 8        | 6    | 10       | 3,9       | 5,2  | C + 1          | C+     | 6     | 4,5    | ±  | 0,4 |
| VS   | 8   | 8        | -    | 9,5      | 7    | 11       | 3,9       | 5,2  | C+1            | C+     | 6     | 4,5    | ±  | 0,4 |
| VS   | 10  | 9,5      | _    | 11,5     | 9    | 15       | 5,6       | 7,7  | C+2            | C+     | 9     | 6,7    | ±  | 0,6 |
| VS   | 12  | 11,5     | -    | 13,5     | 10,5 | 16,5     | 5,6       | 7,7  | C+2            | C+     | 9     | 6,7    | ±  | 0,6 |
| VS   | 14  | 13,5     | 75   | 15,5     | 12,5 | 18,5     | 5,6       | 7,7  | C+2            | C+     | 9     | 6,7    | ±  | 0,6 |
| VS   | 16  | 15,5     | -    | 17,5     | 14   | 20       | 5,6       | 7,7  | C+2            | C+     | 9     | 6,7    | ±  | 0,6 |
| VS   | 18  | 17,5     | _    | 19       | 16   | 22       | 5,6       | 7,7  | C+2            | C+     | 9     | 6,7    | ±  | 0,6 |
| VS   | 20  | 19       | +    | 21       | 18   | 26       | 7,9       | 10,5 | C+2            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 22  | 21       | =:   | 24       | 20   | 28       | 7,9       | 10,5 | C+2            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 25  | 24       | _    | 27       | 22   | 30       | 7,9       | 10,5 | C+2            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 28  | 27       | 4    | 29       | 25   | 33       | 7,9       | 10,5 | C+3            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 30  | 29       | Ti.  | 31       | 27   | 35       | 7,9       | 10,5 | C+3            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 32  | 31       | -    | 33       | 29   | 37       | 7,9       | 10,5 | C+3            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 35  | 33       | -    | 36       | 31   | 39       | 7,9       | 10,5 | C+3            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 38  | 36       | -    | 38       | 34   | 42       | 7,9       | 10,5 | C+3            | C+     | 12    | 9      | ±  | 0,8 |
| VS   | 40  | 38       | 7.   | 43       | 36   | 46       | 9,5       | 13   | C + 3          | C+     | 15    | 11     | ±  | 1   |
| VS   | 45  | 43       | 2    | 48       | 40   | 50       | 9,5       | 13   | C+3            | C+     | 15    | 11     | ±  | 1   |
| VS   | 50  | 48       | #    | 53       | 45   | 55       | 9,5       | 13   | C+3            | C+     | 15    | 11     | ±  | 1   |
| VS   | 55  | 53       | -    | 58       | 49   | 59       | 9,5       | 13   | C+3            | C+     | 15    | 11     | +  | 1   |
| VS   | 60  | 58       | -    | 63       | 54   | 64       | 9,5       | 13   | C+3            | C+     | 15    | 11     | ±  | 1   |
| VS   | 65  | 63       | 2    | 68       | 58   | 68       | 9,5       | 13   | C+3            | C +    | 15    | 11     | ±  | 1   |
| VS   | 70  | 68       | -    | 73       | 63   | 75       | 11,3      | 15,5 | C+4            | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 75  | 73       | 77.5 | 78       | 67   | 79       | 11,3      | 15,5 | C+4            | C+     | 18    | 13,5   | +  | 1,2 |
| VS   | 80  | 78       | 7.   | 83       | 72   | 84       | 11,3      | 15,5 | C+4            | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 85  | 83       | -    | 88       | 76   | 88       | 11,3      | 15,5 | C + 4          | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 90  | 88       | -    | 93       | 81   | 93       | 11,3      | 15,5 | C+4            | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 95  | 93       | 77.5 | 98       | 85   | 97       | 11,3      | 15,5 | C + 4          | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 100 | 98       | -    | 105      | 90   | 102      | 11,3      | 15,5 | C+4            | C+     | 18    | 13,5   | ±  | 1,2 |
| VS   | 110 | 105      | _    | 115      | 99   | 113      | 13,1      | 18   | C + 4          | C+     | 21    | 15,5   | ±  | 1,5 |
| VS   | 120 | 115      | -    | 125      | 108  | 122      | 13,1      | 18   | C + 4          | C+     | 21    | 15,5   | ±  | 1,5 |
| VS   | 130 | 125      | 7.0  | 135      | 117  | 131      | 13,1      | 18   | C + 4          | C+     | 21    | 15,5   | ±  | 1,5 |
| VS   | 140 | 135      | _    | 145      | 126  | 140      | 13,1      | 18   | C+4            | C+     | 21    | 15,5   | ±  | 1,5 |
| VS   | 150 | 145      | =    | 155      | 135  | 149      | 13,1      | 18   | C + 4          | C+     | 21    | 15,5   | ±  | 1,5 |
| VS   | 160 | 155      | Ti.  | 165      | 144  | 160      | 15        | 20,5 | C + 5          | C+     | 24    | 18     | ±  | 1,8 |
| VS   | 170 | 165      | -    | 175      | 153  | 169      | 15        | 20,5 | C + 5          | C+     | 24    | 18     | ±  | 1,8 |
| VS   | 180 | 175      | -    | 185      | 162  | 178      | 15        | 20,5 | C+5            | C+     | 24    | 18     | ±  | 1,8 |
| VS   | 190 | 185      | -    | 195      | 171  | 187      | 15        | 20,5 | C+5            | C+     | 24    | 18     | ±  | 1,8 |
| VS   | 199 | 195      | 7.   | 210      | 180  | 196      | 15        | 20,5 | C + 5          | C+     | 24    | 18     | ±  | 1,8 |

#### Standard sizes: VS Type

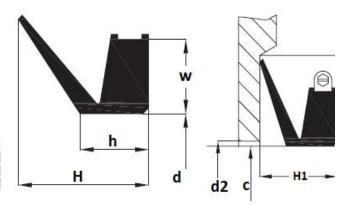
#### **Applications**

w

- General Industry
- Wind Mill Industry

Ring dimensions H = 10,5 [mm] h = 6,0 [mm] W = 6,5 [mm] Assembling dimensions H1 = 8 +/- 1,5 [mm] d2 max = C + 5 [mm] d1 min = C + 20 [mm]




| Refer | ence | Shaft dia | mete | er [mm] | d [mm] | Refer | ence | Shaft dia | mete | r [mm] | d [mm] |
|-------|------|-----------|------|---------|--------|-------|------|-----------|------|--------|--------|
| VL    | 110  | 105       | _    | 115     | 99     | VL    | 375  | 365       | -    | 385    | 337    |
| VL    | 120  | 115       | -    | 125     | 108    | VL    | 400  | 385       | -    | 410    | 360    |
| VL    | 130  | 125       | -    | 135     | 117    | VL    | 425  | 410       | 2    | 440    | 382    |
| VL    | 140  | 135       | -    | 145     | 126    | VL    | 450  | 440       | -    | 475    | 405    |
| VL    | 150  | 145       | _    | 155     | 135    | VL    | 500  | 475       |      | 510    | 450    |
| VL    | 160  | 155       | -    | 165     | 144    | VL    | 525  | 510       | 2    | 540    | 472    |
| VL    | 170  | 165       | -    | 175     | 153    | VL    | 550  | 540       | -    | 565    | 495    |
| VL    | 180  | 175       | -    | 185     | 162    | VL    | 575  | 565       | -    | 585    | 517    |
| VL    | 190  | 185       | _    | 195     | 171    | VL    | 600  | 585       | (T)  | 625    | 540    |
| VL    | 200  | 195       | _    | 210     | 182    | VL    | 650  | 625       | -    | 675    | 600    |
| VL    | 220  | 210       | -    | 233     | 198    | VL    | 700  | 675       | -    | 710    | 630    |
| VL    | 250  | 233       |      | 260     | 225    | VL    | 725  | 710       | -    | 740    | 670    |
| VL    | 275  | 260       |      | 285     | 247    | VL    | 750  | 740       | -    | 775    | 705    |
| VL    | 300  | 285       | -    | 310     | 270    | VL    | 800  | 775       | -    | 825    | 745    |
| VL    | 325  | 310       | -    | 335     | 292    | VL    | 850  | 825       | -    | 875    | 785    |
| VL    | 350  | 335       | -    | 365     | 315    | VL    | 900  | 875       | -    | 925    | 825    |

\*\*Over 900 mm available on request

#### Standard sizes: VE Type

#### Standard sizes

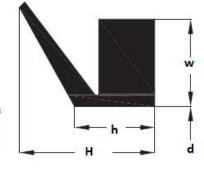
Ring dimensions H = 65 [mm] h = 32 [mm] W = 30 [mm] Assembling dimensions H1 = 50 + /- 12 [mm] d2 max = C + 24 [mm] d1 min = C + 115 [mm]

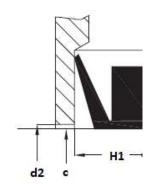


- General Industry
- Paper Mill Industry
- Metals Industry
- Wind Mill Industry

| Refe | rence | Shaft dia | met               | er [mm] | d [mm] | Refe | rence | Shaft dia | mete | r [mm] | d [mm] |
|------|-------|-----------|-------------------|---------|--------|------|-------|-----------|------|--------|--------|
| VE   | 300   | 300       | -                 | 305     | 294    | VE   | 355   | 355       |      | 360    | 347    |
| VE   | 305   | 305       | -                 | 310     | 299    | VE   | 360   | 360       | (5)  | 365    | 352    |
| VE   | 310   | 310       | -                 | 315     | 304    | VE   | 365   | 365       | -    | 370    | 357    |
| VE   | 315   | 315       | _                 | 320     | 309    | VE   | 370   | 370       | -    | 375    | 362    |
| VE   | 320   | 320       | 3 <del>-</del> -3 | 325     | 314    | VE   | 375   | 375       |      | 380    | 367    |
| VE   | 325   | 325       | +                 | 330     | 319    | VE   | 380   | 380       | 7.70 | 385    | 371    |
| VE   | 330   | 330       | -                 | 335     | 323    | VE   | 385   | 385       | -    | 390    | 376    |
| VE   | 335   | 335       | -                 | 340     | 328    | VE   | 390   | 390       | -    | 395    | 381    |
| VE   | 340   | 340       | - 1               | 345     | 333    | VE   | 395   | 395       | -    | 400    | 386    |
| VE   | 345   | 345       | + 1               | 350     | 338    | VE   | 400   | 400       |      | 405    | 391    |
| VE   | 350   | 350       | +1                | 355     | 343    | VE   | 405   | 405       | 7.00 | 410    | 396    |

| Refer | rence | Shaft dia | mete             | er [mm] | d [mm] |   | Refer | rence | Shaft dia | mete | r [mm] | d [mm] |
|-------|-------|-----------|------------------|---------|--------|---|-------|-------|-----------|------|--------|--------|
| VE    | 410   | 410       | 12               | 415     | 401    |   | VE    | 610   | 610       | -    | 620    | 592    |
| VE    | 415   | 415       | -                | 420     | 405    |   | VE    | 620   | 620       | -    | 630    | 602    |
| VE    | 420   | 420       | -                | 425     | 410    |   | VE    | 630   | 630       | -    | 640    | 612    |
| VE    | 425   | 425       |                  | 430     | 415    |   | VE    | 640   | 640       | -    | 650    | 621    |
| VE    | 430   | 430       | -                | 435     | 420    |   | VE    | 650   | 650       | 440  | 660    | 631    |
| VE    | 435   | 435       | -                | 440     | 425    |   | VE    | 660   | 660       | -    | 670    | 640    |
| VE    | 440   | 440       | _                | 445     | 429    |   | VE    | 670   | 670       |      | 680    | 650    |
| VE    | 445   | 445       | -                | 450     | 434    |   | VE    | 680   | 680       | ·    | 690    | 660    |
| VE    | 450   | 450       | -                | 455     | 439    |   | VE    | 690   | 690       |      | 700    | 670    |
| VE    | 455   | 455       | -                | 460     | 444    | П | VE    | 700   | 700       | -    | 710    | 680    |
| VE    | 460   | 460       | -                | 465     | 448    |   | VE    | 710   | 710       | _    | 720    | 689    |
| VE    | 465   | 465       | -                | 470     | 453    |   | VE    | 720   | 720       | 127  | 730    | 699    |
| VE    | 470   | 470       | _                | 475     | 458    |   | VE    | 730   | 730       | -    | 740    | 709    |
| VE    | 475   | 475       | -                | 480     | 463    |   | VE    | 740   | 740       | -    | 750    | 718    |
| VE    | 480   | 480       | -                | 485     | 468    |   | VE    | 750   | 750       |      | 758    | 728    |
| VE    | 485   | 485       | -                | 490     | 473    |   | VE    | 760   | 758       |      | 766    | 735    |
| VE    | 490   | 490       | -                | 495     | 478    |   | VE    | 770   | 766       | -    | 774    | 743    |
| VE    | 495   | 495       | -                | 500     | 483    |   | VE    | 780   | 774       | -    | 783    | 751    |
| VE    | 500   | 500       | -                | 505     | 488    |   | VE    | 790   | 783       | -    | 792    | 759    |
| VE    | 505   | 505       | -                | 510     | 493    |   | VE    | 800   | 792       | -    | 801    | 768    |
| VE    | 510   | 510       | -                | 515     | 497    |   | VE    | 810   | 801       | -    | 810    | 777    |
| VE    | 515   | 515       | -                | 520     | 502    |   | VE    | 820   | 810       | *    | 821    | 786    |
| VE    | 520   | 520       | 175              | 525     | 507    |   | VE    | 830   | 821       | -    | 831    | 796    |
| VE    | 525   | 525       | ÷                | 530     | 512    |   | VE    | 840   | 831       | -    | 841    | 805    |
| VE    | 530   | 530       | -                | 535     | 517    |   | VE    | 850   | 841       | -    | 851    | 814    |
| VE    | 535   | 535       | 20               | 540     | 521    |   | VE    | 860   | 851       |      | 861    | 824    |
| VE    | 540   | 540       | -                | 545     | 526    |   | VE    | 870   | 861       | -    | 871    | 833    |
| VE    | 545   | 545       | 20               | 550     | 531    |   | VE    | 880   | 871       | -    | 882    | 843    |
| VE    | 550   | 550       | -                | 555     | 536    |   | VE    | 890   | 882       | -    | 892    | 853    |
| VE    | 555   | 555       | ( <del>-</del> ) | 560     | 541    |   | VE    | 900   | 892       | -    | 912    | 871    |
| VE    | 560   | 560       |                  | 565     | 546    |   | VE    | 920   | 912       | -    | 922    | 880    |
| VE    | 565   | 565       | (m.)             | 570     | 550    |   | VE    | 930   | 922       | -    | 933    | 890    |
| VE    | 570   | 570       | *                | 575     | 555    |   |       |       |           |      |        |        |
| VE    | 575   | 575       | -                | 580     | 560    |   |       |       |           |      |        |        |
| VE    | 580   | 580       |                  | 585     | 565    |   |       |       |           |      |        |        |
| VE    | 585   | 585       | -                | 590     | 570    |   |       |       |           |      |        |        |
| VE    | 590   | 590       | -10              | 600     | 575    |   |       |       |           |      |        |        |
| VE    | 600   | 600       | -                | 610     | 582    |   |       |       |           |      |        |        |


| Refe | rence | Shaft dia | ımet | er [mm] | d [mm] |
|------|-------|-----------|------|---------|--------|
| VE   | 940   | 933       | -    | 944     | 900    |
| VE   | 950   | 944       | -    | 955     | 911    |
| VE   | 960   | 955       | 14   | 966     | 921    |
| VE   | 970   | 966       | -    | 977     | 932    |
| VE   | 980   | 977       | 2    | 988     | 942    |
| VE   | 990   | 988       | -    | 999     | 953    |
| VE   | 1000  | 999       | -    | 1010    | 963    |
| VE   | 1020  | 1010      | - 5  | 1025    | 973    |
| VE   | 1040  | 1025      | 2    | 1045    | 990    |
| VE   | 1060  | 1045      | -    | 1065    | 1008   |
| VE   | 1080  | 1065      | 22   | 1085    | 1027   |
| VE   | 1100  | 1085      | -    | 1105    | 1045   |
| VE   | 1120  | 1105      | 22   | 1125    | 1065   |
| VE   | 1140  | 1125      | -    | 1145    | 1084   |
| VE   | 1160  | 1145      | 7.7  | 1165    | 1103   |
| VE   | 1180  | 1165      | 4    | 1185    | 1121   |
| VE   | 1200  | 1185      | =    | 1205    | 1139   |
| VE   | 1220  | 1205      | 4    | 1225    | 1157   |
| VE   | 1240  | 1225      |      | 1245    | 1176   |
| VE   | 1260  | 1245      | 2    | 1270    | 1195   |
| VE   | 1280  | 1270      | 7    | 1295    | 1218   |
| VE   | 1300  | 1295      | -    | 1315    | 1240   |
| VE   | 1325  | 1315      | æ    | 1340    | 1259   |
| VE   | 1350  | 1340      | -    | 1365    | 1281   |
| VE   | 1375  | 1365      | 34   | 1390    | 1305   |
| VE   | 1400  | 1390      | _    | 1415    | 1328   |
| VE   | 1425  | 1415      | -    | 1440    | 1350   |
| VE   | 1450  | 1440      | -    | 1465    | 1374   |
| VE   | 1475  | 1465      | 2    | 1490    | 1397   |
| VE   | 1500  | 1490      | -    | 1515    | 1419   |
| VE   | 1525  | 1515      | 14   | 1540    | 1443   |
| VE   | 1550  | 1540      | 77   | 1570    | 1467   |
| VE   | 1575  | 1570      | 2    | 1600    | 1495   |
| VE   | 1600  | 1600      | 77   | 1640    | 1524   |
| VE   | 1650  | 1640      | 2    | 1680    | 1559   |
| VE   | 1700  | 1680      | -    | 1720    | 1596   |
| VE   | 1750  | 1720      | 7    | 1765    | 1632   |
| VF   | 1800  | 1765      | 4    | 1810    | 1671   |
| VE   | 1850  | 1810      | 7    | 1855    | 1714   |
| VE   | 1900  | 1855      | -    | 1905    | 1753   |
| VE   | 1950  | 1905      | 7    | 1955    | 1794   |
| VE   | 2000  | 1955      | 12   | 2010    | 1844   |


#### Standard sizes: VAX Type

#### Standard sizes

Ring dimensions H = 31 [mm] h = 17,3 [mm] W = 17,8 [mm]

Assembling dimensions H1 = 25 +/- 5 [mm] d2 max = C + 12 [mm] d1 min = C + 50 [mm]





- General Industry
- Metals Industry

| Refere | nce | Shaft dia | mete              | er [mm] | d [mm] | Refere | ence | Shaft dia | mete | r [mm] | d [mm] |
|--------|-----|-----------|-------------------|---------|--------|--------|------|-----------|------|--------|--------|
| VAX    | 200 | 200       | 875               | 205     | 192    | VAX    | 360  | 355       | _    | 372    | 328    |
| VAX    | 205 | 205       | -                 | 210     | 196    | VAX    | 380  | 372       | -    | 390    | 344    |
| VAX    | 210 | 210       | _                 | 215     | 200    | VAX    | 400  | 390       | -    | 415    | 360    |
| VAX    | 215 | 215       | -                 | 219     | 204    | VAX    | 425  | 415       | -    | 443    | 385    |
| VAX    | 220 | 219       | _                 | 224     | 207    | VAX    | 450  | 443       | 1    | 480    | 410    |
| VAX    | 225 | 224       | -2                | 228     | 211    | VAX    | 500  | 480       | -    | 530    | 450    |
| VAX    | 230 | 228       |                   | 232     | 215    | VAX    | 550  | 530       | 1740 | 580    | 495    |
| VAX    | 235 | 232       | -                 | 236     | 219    | VAX    | 600  | 580       | -    | 630    | 540    |
| VAX    | 240 | 236       | -                 | 240     | 223    | VAX    | 650  | 630       | -    | 665    | 600    |
| VAX    | 250 | 240       | : <del>**</del> : | 250     | 227    | VAX    | 700  | 665       | *    | 705    | 630    |
| VAX    | 260 | 250       | -                 | 260     | 236    |        |      |           |      |        |        |
| VAX    | 270 | 260       | +                 | 270     | 245    |        |      |           |      |        |        |
| VAX    | 280 | 270       | -                 | 281     | 255    |        |      |           |      |        |        |
| VAX    | 290 | 281       | *                 | 292     | 265    |        |      |           |      |        |        |
| VAX    | 300 | 292       | -                 | 303     | 275    |        |      |           |      |        |        |
| VAX    | 310 | 303       |                   | 313     | 285    |        |      |           |      |        |        |
| VAX    | 320 | 313       | -                 | 325     | 295    |        |      |           |      |        |        |
| VAX    | 330 | 325       | S#:               | 335     | 305    |        |      |           |      |        |        |
| VAX    | 340 | 335       | -                 | 345     | 315    |        |      |           |      |        |        |
| VAX    | 350 | 345       | 727               | 355     | 322    |        |      |           |      |        |        |

| Refer | ence | Shaft dia | met  | er [mm] | d [mm] |
|-------|------|-----------|------|---------|--------|
| VAX   | 725  | 705       | 12   | 745     | 670    |
| VAX   | 750  | 745       | -    | 785     | 705    |
| VAX   | 800  | 785       | -    | 830     | 745    |
| VAX   | 850  | 830       | -    | 875     | 785    |
| VAX   | 900  | 875       | _    | 920     | 825    |
| VAX   | 950  | 920       | -    | 965     | 865    |
| VAX   | 1000 | 965       | -    | 1015    | 910    |
| VAX   | 1050 | 1015      | -    | 1065    | 955    |
| VAX   | 1100 | 1065      | -    | 1115    | 1000   |
| VAX   | 1150 | 1115      | -    | 1165    | 1045   |
| VAX   | 1200 | 1165      |      | 1215    | 1090   |
| VAX   | 1250 | 1215      | 1725 | 1270    | 1135   |
| VAX   | 1300 | 1270      | 12   | 1320    | 1180   |
| VAX   | 1350 | 1320      | -    | 1370    | 1225   |
| VAX   | 1400 | 1370      | -    | 1420    | 1270   |
| VAX   | 1450 | 1420      | -    | 1470    | 1315   |
| VAX   | 1500 | 1470      | -    | 1520    | 1360   |
| VAX   | 1550 | 1520      | -    | 1570    | 1405   |
| VAX   | 1600 | 1570      | _    | 1620    | 1450   |
| VAX   | 1650 | 1620      | -    | 1670    | 1495   |
| VAX   | 1700 | 1670      | -    | 1720    | 1540   |
| VAX   | 1750 | 1720      | -    | 1770    | 1585   |
| VAX   | 1800 | 1770      | -    | 1820    | 1630   |
| VAX   | 1850 | 1820      | -    | 1870    | 1675   |
| VAX   | 1900 | 1870      | -    | 1920    | 1720   |
| VAX   | 1950 | 1920      | -    | 1970    | 1765   |
| VAX   | 2000 | 1970      | _    | 2020    | 1810   |